3 research outputs found

    A Formalism for Visual Query Interface Design

    Get PDF
    The massive volumes and the huge variety of large knowledge bases make information exploration and analysis difficult. An important activity is data filtering and selection, in which both querying and visualization play important roles. Interfaces for data exploration environments normally include both, integrating them as tightly as possible. But many features of information exploration environments, such as visual representation of queries, visualization of query results, interactive data selection from visualizations, have only been studied separately. The intrinsic connections between them have not been described formally. The lack of formal descriptions inhibits the development of techniques that produce new representations for queries, and natural integration of visual query specification with query result visualization. This thesis describes a formalism that describes the basic components of information exploration and and their relationships in information exploration environments. The key aspect of the formalism is that it unifies querying and visualization within a single framework, which provides a foundation for designing and analysing visual query interfaces. Various innovative designs of visual query representations can be derived from the formalism. Simply comparing them with existing ones is not enough, it is more important to discover why one visual representation is better or worse than another. To do this it is necessary to understand users’ cognitive activities, and to know how these cognitive activities are enhanced or inhibited by different presentations of a query so that novel interfaces can be created and improved based on user testing. This thesis presents a new experimental methodology for evaluating query representations, which uses stimulus onset asynchrony to separate different aspects of query comprehension. This methodology was used to evaluate a new visual query representation based on Karnaugh maps, and showing that there are two qualitatively different approaches to comprehension: deductive and inductive. The Karnaugh map representation scales extremely well with query complexity, and the experiment shows that its good scaling properties occur because it strongly facilitates inductive comprehension

    Platinum(II) complexes bearing bulky Schiff base ligands anchored onto mesoporous SBA-15 supports as efficient catalysts for hydrosilylation

    No full text
    Reported herein is an easy-to-prepare novel heterogeneous catalyst of platinum complexes bearing binary ligands of bidentate naphthalenolimine and cyclo-1,5-octadiene that are anchored onto mesoporous silica SBA-15. The presence of the binary ligands not only stabilized the platinum, but also enabled the platinum atoms to form nanoclusters with diameters of ca 1nm, and led to high platinum loading (8.69wt%). Moreover, the platinum catalyst exhibited high catalytic activity towards hydrosilylation of terminal alkenes and styrene with silanes under mild and solvent-free conditions, with excellent regioselectivity
    corecore